Distance Coloring of the Hexagonal Lattice

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance Coloring of the Hexagonal Lattice

Motivated by the frequency assignment problem we study the ddistant coloring of the vertices of an infinite plane hexagonal lattice H. Let d be a positive integer. A d-distant coloring of the lattice H is a coloring of the vertices of H such that each pair of vertices distance at most d apart have different colors. The d-distant chromatic number of H, denoted χd(H), is the minimum number of col...

متن کامل

Distance Coloring

Given a graphG = (V,E), a (d, k)-coloring is a function from the vertices V to colors {1, 2, . . . , k} such that any two vertices within distance d of each other are assigned different colors. We determine the complexity of the (d, k)-coloring problem for all d and k, and enumerate some interesting properties of (d, k)-colorable graphs. Our main result is the discovery of a dichotomy between p...

متن کامل

Wideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...

متن کامل

On sublattices of the hexagonal lattice

How many sublattices of index N are there in the planar hexagonal lattice? Which of them are the best from the point of view of packing density, signal-to-noise ratio, or energy? We answer the first question completely and give partial answers to the other questions.

متن کامل

The hexagonal versus the square lattice

Schmutz Schaller’s conjecture regarding the lengths of the hexagonal versus the lengths of the square lattice is shown to be true. The proof makes use of results from (computational) prime number theory. Using an identity due to Selberg, it is shown that, in principle, the conjecture can be resolved without using computational prime number theory. By our approach, however, this would require a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2005

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.1269